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45  Abstract. We perform an inverse modelling analysis to quantify biomass burning emissions of carbon monoxide (CO) from
the extreme wildfires in Canada between May and September 2023. Using the GEOS-Chem model, we assimilated
observations from the Tropospheric Monitoring Instrument (TROPOMI) separately and then jointly with Total Carbon Column
Observing Network (TCCON) measurements. We also evaluated prior emissions from the Quick Fire Emissions Dataset
(QFED), Blended Global Biomass Burning Emissions Product eXtended (GBBEPx), Global Fire Assimilation System

50 (GFAS), and Canadian Forest Fire Emissions Prediction System (CFFEPS). The assimilation of TROPOMI-only
measurements estimated posterior North America emissions for QFED, GBBEPx, GFAS, and CFFEPS of 110.4+20, 112.8+20,
127.2417, and 125.6+18 Tg CO compared to prior estimates of 37.1, 42.7, 91.0, and 90.2 Tg CO, respectively. The joint
assimilation of TROPOMI+TCCON reduced the uncertainty on the North American emission estimates by up to about 30%,
while showing only a modest impact (< 5%) on the magnitude of the inferred emissions. An evaluation against independent

55 measurements reveals that adding TCCON data increases the correlations and slightly lowers the biases and standard
deviations. Additionally, including an experimental TCCON product at East Trout Lake with higher surface sensitivity, we
find better agreement of the assimilation results with nearby in situ tall tower and aircraft measurements. This highlights the
potential importance of vertical sensitivity in these experimental data for constraining local surface emissions. Our results
demonstrate the complementarity of the greater temporal coverage provided by TCCON with the spatial coverage of

60 TROPOMI when these data are jointly assimilated.

1 Introduction

Biomass burning (BB) from wildfires is a major source of carbon emissions released into the atmosphere with large
climate and air quality impacts, exerting a significant influence on human health, ecosystems, and the environment (Cascio,
2018; Chen et al., 2017; O’Neill et al., 2021; Wu et al., 2022). Over the past few years, wildfires have become more frequent

65 and destructive in different regions of the world (Jegasothy et al., 2023; Mataveli et al., 2024; You & Xu, 2023). More
specifically, in Canada in 2023, the total area burned by wildfires surpassed the previous record in 1989 (75,596 km?) by nearly
a factor of 2.5 while the amount of emitted carbon also dramatically increased by more than 11 times compared to the 1998—
2022 average (Jain et al., 2024; Jones et al., 2024; Kolden et al., 2024). Therefore, reactive trace gases (e.g., CO) and
greenhouse gases (GHGs) (e.g., CH4 and CO») had an unprecedent increase during the 2023 wildfire emissions (Byrne et al.,
70 2024). In addition to perturbing the carbon budget, these emissions also have implications for air quality. However, obtaining
reliable estimates of wildfire emissions is a challenging task due to several factors, such as the episodic and localized nature
of these emissions (Sokolik et al., 2019; Zhao et al., 2025). Here, we focus on estimating emissions from carbon monoxide
(CO) from wildfires during the summer 2023. With a lifetime of up to several months (Holloway et al., 2000), which is
sufficiently long to track long-range transport on intercontinental scales, CO is an ideal tracer of combustion. CO plays an
75 important role in both air quality and climate as it is a precursor of ozone (O3) and the dominant sink of the hydroxyl radical

(OH), which is the main atmospheric oxidant (Aschi & Largo, 2003; Fowler et al., 2008). Observations of CO have provided
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information on combustion sources on a range of scales, from urban to regional and global scales (Borsdorff et al., 2020;
Cristofanelli et al., 2024; Pommier et al., 2013; Schneising et al., 2020; Tang et al., 2019).
CO emissions from wildfires can be estimated either from bottom-up or top-down approaches. In the bottom-up
80 approach, emissions are represented as the product of an emission factor, which is the amount of trace gas emitted per unit of
fuel consumed, and the amount of dry matter burned. Bottom-up inventories use either observations of burned area to determine
the mass of dry matter burned (Liu et al., 2024; van der Werf'et al., 2017; Wiedinmyer et al., 2023) or estimates of fire radiative
power (FRP) to quantify the rate of fuel consumption (Filizzola et al., 2023; Kaiser et al., 2012). There are typically large
uncertainties in these inventories (Andreae, 2019; Hundal et al., 2024) arising from discrepancies in the emission factors and
85 the estimated mass of dry matter burned, resulting in significant differences in emission estimates (Chen et al., 2022; Nguyen
et al., 2023; Saikawa et al., 2017; Zhang et al., 2023). The top-down approach makes use of CO observations to optimize
emissions through an inverse modelling method, but this approach depends on the use of an atmospheric chemistry-transport
model and a priori emission estimates, which are typically obtained from a bottom-up inventory.
Over the past two decades, global CO observations have been provided by several satellite sensors, including the
90 Measurements of Pollution in the Troposphere (MOPITT) instrument (Deeter et al., 2003; Edwards et al., 2006), the Infrared
Atmospheric Sounding Interferometer (IASI) (Pope et al., 2021; Turquety et al., 2004), and the Tropospheric Emission
Spectrometer (TES) (Lopez et al., 2008), and these data have been used in numerous inverse modelling studies to quantify CO
emissions (e.g., Kasibhatla et al., 2002; Arellano Jr. et al., 2006; Warner et al., 2007; Jones et al., 2009; Kopacz et al., 2010;
Miyazaki et al., 2012; Miyazaki, Eskes, and Sudo 2015; Jiang et al., 2017; Zheng et al., 2019). However, large discrepancies
95 between the inversion results have been reported, which may arise from differences between spatiotemporal coverage of the
observations, the vertical sensitivity of the measurements, and observation biases (Deeter et al., 2015; Jiang et al., 2017; Jones
et al., 2009; Miyazaki et al., 2015; Warner et al., 2010). Nonetheless, a few recent studies attempted to address some of the
challenges by reducing potential biases in the model (Gaubert et al., 2023; Miyazaki et al., 2020) or by improving the quality
of the assimilated data (Tang et al., 2024). The Tropospheric Monitoring Instrument (TROPOMI) (Borsdorff et al., 2018),
100 launched in 2017, has provided CO retrievals with improved accuracy, higher spatial resolution, significantly greater
observational coverage (Landgraf et al., 2016; Schneising et al., 2020), and many recent studies have used TROPOMI
observations for inverse modelling of CO emissions (Borsdorff et al., 2023; Byrne et al., 2024; Goudar et al., 2023; Griffin et
al., 2024; Inness et al., 2022; Shahrokhi et al., 2023; Stockwell et al., 2022; Wan et al., 2023).
Measurements from surface in situ networks and aircraft campaigns have been used for CO trend determination (Patel
105 et al.,, 2024) and CO inversion studies in the past (Palmer et al., 2003; Yumimoto & Uno, 2006; Koohkan & Bocquet, 2012;
Tang et al., 2013; Feng et al., 2020). However, mainly due to limited spatiotemporal coverage and/or vertical distribution, they
are typically incapable of sufficiently constraining emission estimates on fine spatial scales, and therefore model errors, such
as those from vertical transport, the OH field, and the a priori emissions, can significantly impact the inferred emission
estimates (Hooghiemstra et al., 2011). Only a few studies have attempted to use both satellite and surface observations together

110  to exploit the complementarity of these observations to reduce the influence of errors, such as those that arise from the

3
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sensitivity to the vertical distribution of CO (Tang et al., 2022) and long-range transport (Kim et al., 2024). However, most of
these studies focused on inversions over a limited area, where sufficient surface CO observations are available. There are also
ground-based total column measurements from networks such as the Total Carbon Column Observing Network (TCCON,
Wunch et al. 2011), which was designed in part to validate satellite observations (Borsdorff et al., 2019; Bukosa et al., 2023;
115 Hedelius et al., 2021; Sha et al., 2021; Tang et al., 2024). The TCCON provides time-resolved and accurate column averaged
dry-air mole fractions of CO (XCO) under sunny skies. Although TCCON observations are spatially sparse, they are of high
temporal density, and therefore could provide valuable information in constraining episodic CO emissions from wildfires.
However, a standard method of integrating TCCON measurements with satellite data in a data assimilation or inversion system
is still lacking, as most current studies assimilate satellite data, while reserving the TCCON data to evaluate the performance
120  of the assimilation.
In this study, we quantify biomass burning CO emissions between May and September 2023 using the CHemistry and
Emissions REanalysis Interface with Observations (CHEEREIO) assimilation toolkit (Pendergrass et al., 2023), which
employs the GEOS-Chem model and an ensemble Kalman filter (EnKF) scheme. We conduct a global analysis, but our focus
is on quantifying boreal emissions associated with the 2023 fires in Canada. We jointly assimilate TCCON and TROPOMI
125 data and conduct a comparison with a TROPOMI-only assimilation to assess the added value of TCCON observations in the
assimilation and to determine the additional constraints that TCCON data provide for optimizing CO emissions from localized
and episodic wildfires. We include two distinct types of TCCON data with different vertical sensitivities in our inversion,
while using independent total-column and in situ surface and aircraft vertical profile observations to characterize the success
of our analysis. Additionally, we evaluate the following three global and one regional biomass burning inventories in the
130 context of the assimilation: the Quick Fire Emissions Dataset (QFED) (Koster et al., 2015), the Blended Global Biomass
Burning Emissions Product eXtended (GBBEPx) (Zhang et al. 2012; 2019), the Global Fire Assimilation System (GFAS)
product (Kaiser et al. 2012; Di Giuseppe et al. 2021), and the Canadian Forest Fire Emissions Prediction System (CFFEPS)
(Chen et al., 2019).
We begin in Section 2 with a description of the observations and model configurations, including the a priori emissions
135 used in the inversion. Section 3 presents the inversion methods, the main assumptions, and sensitivity experiments using
simulated observations to tune the inversion performance. Section 4 provides the main results and discussion, and finally, the

study concludes with a few summary points and a suggestion for future works.

2 Observations and model
2.1 TROPOMI

140 The TROPOMI instrument is on board the Copernicus Sentinel 5 Precursor (S5P) satellite, which was launched in
October 2017. Total column abundances of carbon monoxide (XCO) are retrieved from spectra measured in the shortwave

infrared (SWIR) band at 2305-2385 nm, with daily global coverage, a local overpass solar times of 13:30, and high spatial
4
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resolution of 5.5 x 7 km? (Veefkind et al., 2012). We use the operational XCO product publicly available from the European
Space Agency (ESA) Sentinel-5SP data hub at https://scihub.copernicus.eu/ (last access: 4 June 2024) (Landgraf, 2019), with a
145 reported bias of better than 15 ppb in comparison with TCCON GGG2014 data product (Sha et al., 2021). The XCO data are
published together with the total column averaging kernels to account for the sensitivity of the retrieved total column to the
true atmosphere, thus, they can be used along with a priori vertical profiles to obtain model equivalent total CO columns
representing the observed data (Apituley et al., 2018). The TROPOMI retrieval algorithm provides clear-sky and cloudy
observations over land and ocean (Borsdorff et al., 2019), however, we only use measurements with a quality flag equal to and
150 greater than 0.7 to ensure high-quality data obtained under cloud-free or low cloud conditions. As shown in the Fig. 1a, we
exclude TROPOMI observations poleward of 60°, primarily to avoid biases due to low surface albedo in the SWIR from snow
cover (Hasekamp et al., 2022; Lorente et al., 2021) and biases due to the stratosphere in the chemical transport model (CTM)
affecting the inversion performance (Turner et al., 2015). Since the horizontal resolution of the TROPOMI data is substantially
higher than the GEOS-Chem model resolution used in this study (2° x 2.5°), the observations are not spatially representative
155  for the model grid cells, resulting in a large representativeness error within the assimilation process. To overcome this, we
aggregate the observations into so-called super-observations before using them in the assimilation. In fact, we average the
observations, weighted based on their reported retrieval errors, on the model spatiotemporal grids (Eskes et al., 2003; Miyazaki
et al., 2012) for the duration of the study between May and September 2023. The super-observation errors in each grid are also
obtained by averaging the reported retrieval errors combined with the error correlation between measurements following
160 Pendergrass et al. (2023). Finally, a total of 1,744,682 number of observations are processed.

Several previous studies evaluated TROPOMI XCO observations and found reasonable agreement with satellite and
ground-based measurements. For example, Sha et al. (2021), reported a bias of 2.45 + 3.38% against the unscaled TCCON
and a bias of 6.50 £ 3.45% against the Network for the Detection of Atmospheric Composition Change (NDACC, De Maziere
et al., 2018), which remains within the range of TROPOMI’s precision and accuracy. In addition, the TROPOMI validation

165 reports (https://mpc-vdaf.tropomi.eu/, last access: 28 June 2024, Lambert et al., 2024) operational TROPOMI XCO are in good
agreement with collocated measurements from NDACC, TCCON, and the Collaborative Carbon Column Observing Network
(COCCON, Alberti et al., 2022; Frey et al., 2019) monitoring networks.

2.2 TCCON

TCCON (https://www.tccon.caltech.edu/) is a ground-based network of solar-viewing Fourier transform spectrometers

170  (FTS) that collect atmospheric transmission spectra every 2-3 minutes. The spectra range covers the near and short-wave
infrared region, and measurements collected under clear-sky conditions are used to retrieve column-averaged dry-air mole
fractions of trace gases, including carbon monoxide (i.e., XCO) (Wunch et al., 2011). We use data from 15 sites around the
world, shown in Fig. 1 and listed in Table 1, derived from the standard GGG2020 retrieval software (Laughner et al., 2024).

The difference between the GGG2020 and GGG2014 XCO retrieval data is 6.3 ppb, with GGG2020 larger than GGG2014.
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175 This is because TCCON data are no longer scaled to the WMO trace gas scale (Wunch et al., 2025). The accuracy and precision
of the standard TCCON XCO product is reported to be around 8 ppb. These data are publicly available and can be accessed
via https://tccondata.org/ (last access: 1 June 2024). In addition to the standard XCO retrievals, which use spectra measured
using an InGaAs detector and a CO window centred at 4290 cm™!, we use retrievals of XCO available from spectra collected
at the East Trout Lake TCCON station from an additional InSb detector. The spectral range of the InSb detector includes two

180 mid-infrared windows (centred at 2111 cm™ and 2160 cm™') that contain strong CO absorption features that result in an XCO
retrieval with markedly different averaging kernels (orange) from the standard XCO retrieval (blue), as shown in Fig. lc-d.
These mid-infrared spectral windows were used in a previous study together with the standard TCCON CO window to extract
vertical information from the TCCON measurements (Parker et al., 2023). The XCO retrievals from the InSb spectra have
higher sensitivity to the surface and lower sensitivity to the higher altitudes than the standard XCO retrievals. The impact of

185 including these mid-infrared XCO retrievals on the inversion performance to constrain CO emissions is discussed in Section
4.5.

We filter all TCCON datasets to include only data with a quality flag = 0 (i.e., the highest quality data). To prepare for
the assimilation, first, all the measurements are aggregated in time, based on the model output hourly timestep, weighted by
the measurement reported errors. This produced 213,784 quality-controlled data points that were then mapped on the GEOS-

190  Chem grid resolution, providing median hourly averaged observations for the period of May—September 2023 in this study.
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Figure 1: (a) The number of TROPOMI and TCCON observations (XCO) used in the global inversion, after filtering as described in the
text. (b) The variability of the number of TROPOMI (blue) and TCCON observations (red) at the East Trout Lake (ETL) TCCON station
from April-September 2023. (¢) Temporal series (MM-DD) of XCO column retrievals of standard TCCON GGG2020 data (blue) and XCO

195 measurements from InSb detector (orange) at East Trout Lake (ETL) between May-September 2023. (d) Column averaging kernels for the
standard TCCON GGG2020 XCO (blue); column averaging kernels for XCO measurements derived from an alternative CO absorption
window on the ETL InSb detector (orange) at East Trout Lake (ETL) between May-September 2023.

2.3 NDACC and in situ data

This study employs two independent ground-based data sources for validation purpose. We utilize measurements from
200 NDACC, a global network of ground-based stations equipped with Fourier transform infrared (FTIR) spectrometers that
provide long-term total-column measurements of XCO (De Maziére et al., 2018). NDACC XCO measurements, similar to
those from TCCON (i.e., same spectral domain as the InSb TCCON data), are of high-quality and well-suited for validating
models, satellite observations, and assimilation system performance (Kerzenmacher et al., 2012; Lutsch et al., 2020; Sha et al.,
2021). In this study, we include mid-infrared NDACC total column data from seven stations covering the study period (see

205 Table 1). The data are publicly available at http://www.ndacc.org (last access: 30 July 2024).
Additionally, continuous and discrete surface in situ CO measurements obtained from the World Data Centre for
Greenhouse Gases (WDCGG) serve as a second independent dataset to evaluate surface CO concentrations obtained from our

experiments (see Table 2). In situ measurements compiled by the WDCGG have been widely used in previous inverse



https://doi.org/10.5194/egusphere-2025-858
Preprint. Discussion started: 13 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

modelling studies for validating results and testing model performance (Chevallier et al., 2011; Jiang et al., 2017; Miyazaki et
210 al., 2020; Tanimoto et al., 2008). We use the archived data from nine sites over the study period, which are publicly available
and accessed from https://gaw kishou.go.jp/ (last access: 1 July 2024). We also use in situ tall tower measurements at East
Trout Lake (ETL) provided by Environment and Climate Change Canada (ECCC) (Chen et al., 2014) to assess the impact of

using the XCO retrievals from the InSb spectra on the inversion results. The evaluation results are presented in Section 4.5.

2.4 Aircraft

215 We use in situ aircraft CO measurements from the National Oceanic and Atmospheric Administration (NOAA) (McKain
et al., 2024, https://gml.noaa.gov/aftp/data/trace gases/co/pfp/aircraft/) taken as another independent source to evaluate our
inversion results. Aircraft directly samples the atmosphere at a near-continuous rate which allows to capture temporal
variability (i.e., seasonal and interannual changes) of the greenhouse gases in the lower atmosphere. It provides measurements
at different sites across the United States and Canada and at different altitudes, descending from maximum 8000 m to the

220 lowest sampling level at ~750 m (a.s.l). Focusing on the impact of the experimental TCCON InSb data used in the inversion
to constrain surface CO emissions, we use aircraft profiles at ETL during multiple time events (details are discussed in Section

4.5). Table 1 shows the list and geographical information of all observations used for evaluation.
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Table 1: List of ground network, surface in situ, aircraft, and tall tower measurements used in this study between May and September 2023.

Measurement Site (ID) Latitude Longitude Altitude Reference
(km a.s.l)
TCCON Sodankyld, Finland 67.4°N 26.6°E 0.188 (Kivi et al., 2022)
TCCON Karlsruhe, Germany 49.1°N 84°E 0.116 (Hase et al., 2023)
TCCON Garmisch, Germany 47.4°N 11.1°E 0.740 (Sussmann & Rettinger, 2023)
TCCON Paris, France 48.8° N 24°E 0.060 (Té et al., 2022)
TCCON Harwell, UK 51.6°N 1.3°W 0.142 (Weidmann et al., 2023)
TCCON Izana, Tenerife, Spain 28.3°N 16.5°W 2.370 (Garcia et al., 2022)
TCCON East Trout Lake, Canada 54.3°N 104.9°' W 0.502 (Wunch et al., 2022)
TCCON Lamont, USA 36.6°N 97.5°W 0.320 (Wennberg, Wunch, et al., 2022)
TCCON Park Falls, USA 45.9°N 90.3° W 0.440 (Wennberg, Roehl, Wunch, Toon, et al., 2022)
TCCON Caltech, USA 34.1°N 118.1°W 0.230 (Wennberg, Roehl, Wunch, Blavier, et al., 2022)
TCCON Edwards, USA 34.0°N 117.8°W 0.700 (Iraci et al., 2022)
TCCON Rikubetsu, Japan 43.5°N 143.8°E 0.380 (Morino et al., 2022a)
TCCON Tsukuba, Japan 36.1°N 140.1°E 0.030 (Morino et al., 2022b)
TCCON Wollongong, Australia 34.4°8 150.9°E 0.300 (Deutscher et al., 2023)
TCCON Lauder, New Zealand 45.0°S 169.7°E 0.370 (Pollard et al., 2022)
NDACC Tsukuba, Japan 36.1°N 140.1°E 0.030 (Morino et al., 2022b)
NDACC Wollongong, Australia 34.4°S 150.9°E 0.300 (Jones et al., 2009)
NDACC Lauder, New Zealand 45.0° S 169.7° E 0.370 (Begue et al., 2024)
NDACC Arrival Heights, Antarctica 77.8°8S 66.67° E 0.184 (Smale et al., 2021)
NDACC St. Petersburg, Russia 59.9°N 29.8°E 0.020 (Makarova et al., 2024)
NDACC Jungfraujoch, Switzerland 46.5°N 79°E 3.580 (Zander et al., 2008)
NDACC Altzomoni, Mexico 19.1°N 98.6° W 3.985 (Grutter et al., 2008)
In Situ Bukit Kototabang (BKT), Indonesia 0.2°S 100.3°E 0.864 (Eko Cahyono et al., 2022), Reza Mahdi, BMKG
In Situ Minamitorishima (MNM), Japan 24°N 153.9°E 0.007 (Takatsuji Shinya, 2024a)
In Situ Ryori (RYO), Japan 39.3°N 141.8°E 0.260 (Takatsuji Shinya, 2024b)
In Situ Yonagunijima (YON), Japan 24.4°N 123°E 0.030 (Takatsuji Shinya, 2024c)
In Situ Capo Granitola (CGR), Italy 37.6°N 126°E 0.005 (Cristofanelli et al., 2017)
In Situ Cape Point (CPT), South Africa 343°S 18.5°E 0.230 (Labuschagne et al., 2018)
In Situ Cape Verde Atmospheric Observatory 16.9°N 24.9°wW 0.010 (Kozlova, E. et al., 2021)
(CVO), Cabo Verde
In Situ Jungfraujoch (JFJ), Switzerland 46.5°N 79°E 3.580 (Hueglin et al., 2024), Martin Steinbacher, Empa
In Situ Mt. Kenya (MKN), Kenya 0.06° S 373°E 3.678 (Kirago et al., 2023), Martin Steinbacher, Empa
Tall tower East Trout Lake, Canada 54.3°N 104.9°W 0.502° (Chen et al., 2014), Douglas Worthy, ECCC
Aircraft East Trout Lake, Canada 54.3°N 104.9°W - (McKain et al., 2024)

*This is the surface altitude, and the measurement intake are at four levels (95, 55, 33, 22m) installed on a 105m SaskTel communication tower.

225 2.4 GEOS-Chem and prior estimates

The GEOS-Chem model (http://www.geos-chem.org, last access: 1 July 2024) is a global 3D CTM driven by assimilated
meteorological observations from the NASA Global Modelling and Assimilation Office (GMAO). We use version 14.1.1 of
GEOS-Chem driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro
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et al., 2017) meteorological fields. The meteorological fields have a native resolution of 0.25° x 0.3125° with 72 vertical levels

230 from the surface to 0.01 hPa, which is degraded to 2° x 2.5° horizontal grid and 47 vertical levels. For the purpose of global
CO assimilation in this study, the linear CO-only simulation of GEOS-Chem, also known as “tagged CO”, is used with
prescribed monthly mean OH fields from a 10-year archived full chemistry simulation based on version 14 of the model. The
tagged CO simulation reduces the computation cost relative to the full-chemistry and has been widely applied in different
studies in the past (Heald et al., 2004; Jiang et al., 2017; Jones et al., 2009; Kopacz et al., 2010; Lutsch et al., 2020; Tang et

235  al.,2023; Wunchetal.,2019). Version 14.1.1 of the tagged CO simulation incorporated the improved secondary CO production
scheme for the tagged CO simulation, which reduces the differences between full chemistry and tagged CO simulations,
especially in regions strongly influenced by biogenic emissions and chemistry (Fisher et al., 2017). The biogenic source of CO
in the full chemistry simulation is based on the oxidation of volatile organic compounds (VOCs) produced by the Model of
Emissions of Gases and Aerosols from Nature (MEGAN version 2.1) inventory (Guenther et al., 2012).

240 For the results presented here, we specify fossil fuel emissions of CO from the Community Emissions Data System
(CEDS) inventory (Hoesly et al., 2018). Biomass burning (BB) emissions are based on the four different BB inventories
described below. These BB emissions have been used in various studies (Griffin et al., 2020; Jin et al., 2024; Li et al., 2020;

Zhang et al., 2022), and are used as our prior emissions in the inversion analyses conducted here.

2.4.1 QFED

245 The Quick Fire Emissions Dataset version 2.5r1 (QFED v2.5r1) (Koster et al., 2015), is a global product of biomass
burning emissions which was developed for the NASA GEOS model. It applies the fire radiative power (FRP) method with a
cloud correction technique (Koster et al., 2015), where the location of fires and FRP are derived from the polar orbiting
Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the NASA’s Terra and Aqua satellites. QFED
provides daily emissions with a horizontal spatial resolution of 0.1° x 0.1° and GEOS-Chem applies a climatological profile

250 based on WRAP (Western Regional Air Partnership) method (WRAP, 2005) to distribute the emissions over the diurnal cycle.
In the QFED implementation in GEOS-Chem, the setup of the plume injection height follows Fischer et al. (2014) and Travis
et al. (2016), where the 65% of the biomass burning emissions are allocated to the planetary boundary layer (PBL) and the
remaining  35%  belongs to the free troposphere. The QFED data can be accessed from
http://geoschemdata.wustl.edu/ExtData/HEMCO/QFED/v2023-05/ (last access: 1 July 2024).

255 2.4.2 GBBEPx

The Blended Global Biomass Burning Emissions Product eXtended (GBBEPx v4, Zhang et al., 2012; 2019), developed
by NOAA National Environmental Satellite, Data, and Information Service (NESDIS), produces daily global biomass burning
emissions. GBBEPx blends information from QFED and fire emissions estimated from the Visible Infrared Imaging
Radiometer Suite (VIIRS) instrument onboard Suomi National Polar-orbiting Partnership (SNPP) and Joint Polar Satellite

260 System (JPSS). VIIRS fire emissions are obtained using FRP derived from VIIRS data in an approach that is similar to the use
10
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of MODIS FRP data in QFED (Csiszar et al., 2016), but with a different fire detection scheme (Zhang et al., 2019). The blended

GBBEPx emissions are produced daily at a resolution of 0.25° x 0.3125° and the same profile is applied to distribute the

emissions over the diurnal cycle as is used for QFED. The implementation of GBBEPx in GEOS-Chem assumes the same

plume injection height scheme as for QFED. The GBBEPx v4 data can be accessed from
265  https://www.ospo.noaa.gov/pub/Blended/GBBEPx/ (last access: 1 July 2024).

2.4.3 GFAS

The Global Fire Assimilation System (GFAS vl1.2, Kaiser et al. 2012; Di Giuseppe et al., 2021), utilized by the

Copernicus Atmosphere Monitoring Service (CAMS), provides daily estimate of biomass burning emissions by assimilating

FRP observations from MODIS instruments on the Terra and Aqua satellites. GFAS estimates emissions by conversion of

270 FRP to the dry matter burned and the use of biome-specific emission factors. GFAS utilizes the vegetation-type prescribed by
Global Fire Emissions Database (GFED). The daily data are globally available at a resolution of 0.1° x 0.1° from 2003 to the
present time, which can be accessed from https://ads.atmosphere.copernicus.eu/datasets/cams-global-fire-emissions-
gfas?tab=overview, (last access: 11 June 2024). In the GEOS-Chem simulations, we use the same diurnal cycle as used in
QFED and GBBEPx. Additionally, GFAS provides information about the daily injection height (i.e., mean altitude of

275 maximum injection (MAMI)) of the emissions. In GEOS-Chem, it is assumed that the emissions are injected uniformly from

the surface to the MAMI.

2.4.4 CFFEPS

The Canadian Forest Fire Emissions Prediction System (CFFEPS v4.0, Chen et al., 2019) produces biomass burning

emissions for North America using information from the Canadian Forest Service (CFS) Canadian Wildland Fire Information

280 System (CWFIS) and meteorological inputs from ECCC’s Global Environmental Multiscale (GEM) model. The product

provides hourly fire emissions and smoke plume injection height at individual hotspot locations. In implementing the CFFEPS

emissions in GEOS-Chem, the emissions were aggregated to the GEOS-Chem grid resolution with a weighted averaged plume

height based on the CO; emission level. The CO; emission level was used in determining the injection height for all species in

CFFEPS, even though here we focus only on the CO emissions. The plume injection height estimates from the FireWork

285 plume rise model (Anderson et al., 2011; Chen et al., 2019) on which CFFEPS is based, has been validated against satellite
(e.g., TROPOMI) driven aerosol plume heights (Griffin et al., 2020).

3 Inversion methodology

The inversion framework utilizes the CHEEREIO assimilation toolkit (Pendergrass et al., 2023), which employs a
localized ensemble transform Kalman filter (LETKF). A detailed description of the LETKF algorithm used is provided in Hunt
290 et al. (2007). We use CHEEREIO to derive optimized estimates of global gridded emissions of CO between May and

11
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September 2023 at a spatial resolution of 2° x 2.5° and a temporal resolution of three days by assimilation of TROPOMI
satellite and TCCON observations. The solution state vector of emissions, x%, is given by

X% = X + yX*Pa(v?) R (y° — HxD)), 1)
where the overbar represents the ensemble mean, x? is background state vector, ¥° is the observation vector, H (x?) is the

295 model simulation of the observations with observation operator H, R is the observation error covariance matrix, P¢ is the
analysis error covariance matrix, X” is the background perturbation matrix, ¥? is the observation perturbation matrix, and y is
a regularization factor (see the detail description of variables in Hunt et al., 2007).

To simulate the observations, we have developed an observation operator for each measurement type. The observation
operator maps the model emission fields (i.e., state space) into the observation space as follow:

300 H(xP) = hy[c?PTioTi 4+ A(M(xP) — c@PTioTt)] Q)
where A denotes the averaging kernel of the retrieval, capturing the vertical sensitivity of the retrieval profiles relative to the
real atmosphere, c®P"° is the a priori profile for the retrievals, M(x") represents the simulated GEOS-Chem CO profile
spatially and temporally mapped to the location and time of the measurements, and h, describes the vertical summation
operator based on pressure weighting for computing model equivalent column retrievals. Eq. 2 is applied to every ensemble

305 member and the results will be passed to the LETKF processor, which scales the emissions based on the observation increments
(i.e., y° — H(x)), and the observation and the prior error covariances. Accordingly, gridded total CO emissions from all
sources, including biomass burning (BB), fossil fuel, and biogenic emissions, are updated through the inversion process. Note
that the analysis here will focus on regions where BB plays a dominant role in the attribution of CO emissions between May
and September 2023, and where the BB emissions are spatially distinct from fossil fuel emissions. As a result, misattribution

310 of CO emissions to BB from other sources will be minor and likely falls within the uncertainty bounds of the a posteriori
estimates.

To obtain an efficient performance of the inversion using TCCON data, it is important to tune the assimilation
parameters with the available configuration in CHEEREIO. This was accomplished through a series of observing system
simulation experiments (OSSEs), which are described in Appendices A and B. We use 24 ensemble members following

315 previous inversion studies with the same approach (Liu et al., 2019; Pendergrass et al., 2023). Our sensitivity test with a larger
ensemble size of 36 produced nearly identical posterior error estimates, with negligible improvements; thus, for saving on the
computational cost of the analysis, we used the smaller ensemble size.

Before starting the inversion, we first conducted a 1-year model spin-up in 2022 (January-December) for all experiments
to minimize the impact of the initial conditions on the analysis. Then, an ensemble spin-up without assimilating observations

320 is performed, where we perturbed emissions based on a log-normal distribution to create an ensemble spread. A sufficient
spread is essential for constructing the prior error covariance. We use a spin-up of about three months, comparable to the CO
lifetime during summer, not only to provide a reasonable spread in the ensemble but also to ensure the concentrations will

reflect the perturbation of emissions. The choice of a log-normal distribution not only maintains the positivity of the solution

12
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(i.e., prevent an unrealistic negative scaling factors), but also better represents the uncertainty of CO emission estimates from
325 inventories (Maasakkers et al., 2019; Plant et al., 2022). At the start of the assimilation, we adjusted the ensemble members by
a global multiplicative factor, making the ensemble mean equivalent to the TROPOMI and TCCON observations. This
maintains a globally unbiased field of concentrations relative to the observations. Because the LETKF is sequential, it takes
some time for the observations to provide sufficient information to update the emissions. To account for this lag, we use a one-
month burn-in period in CHEEREIO (Pendergrass et al., 2023), for which the inversion output is discarded in post-processing.
330 The performance of the inversion can be also enhanced using different LETKF parameters, such as localization and
inflation parameters (Bisht et al., 2023; Miyazaki et al., 2012, 2020). For the TROPOMI and TCCON data, we use
regularization factors, Yrropomr = 0.2 and yrccon = 5, respectively, estimated separately for each observation type through
the OSSE experiments (see Appendix B). These factors scale the observation error covariances to balance the weight given to
the measurements relative to the prior weight in the inversion. For the high spatial density of satellite observations, a factor of
335 y < 1lisrequired to prevent overfitting, while for sparse measurements like TCCON, a factor of y > 1 is typically suitable to
prevent underfitting of the observations. We also use an inflation factor A = 0.08 to compensate for a quick reduction of the
ensemble spread, which may result in an inversion not updating by subsequent observations. We set a localization radius of
500 km to avoid the impact of distant observations, which may be impacted by sampling errors and spurious correlations.
Additionally, for TROPOMI, the total observation errors are equivalent to the super-observation errors as described in Section
340 2.1, assuming an observation error correlation of 0.28 following previous studies (Chen et al., 2023; Pendergrass et al., 2023).
We do not explicitly account for model transport errors in calculating the super-observations, but the influence of these errors

will be captured by the error inflation in the inversion.
We conducted a series of assimilation experiments, which are listed in Table 2, to assess the impact of the use of TCCON
and TROPOMI data and the choice of a priori emission inventories on the inferred CO emissions. Each experiment pairs a
345 specific emission inventory—QFED, GBBEPx, GFAS, or CFFEPS—with either only TROPOMI observations or both
TROPOMI and TCCON data in the assimilation process. Although the emissions are optimized at the grid box scale, we
aggregate emissions for the following five regions (shown in Fig. 2), where there are typically significant fire emissions
between May and September: North America (NA), Siberia (SI), South America (SA), Africa (AF), and South Asia and
Australia (SA&A). Any emission from outside of these five regions are captured in the Rest of the World (ROW) category.

350 The emissions from the five regions account for 90% — 95% of biomass burning emissions globally.
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Figure 2: Major source regions of the biomass burning CO emissions used in the inversion analysis between May-September 2023 with an
example of the a priori emission estimate using the GFAS bottom-up inventory. The a priori estimates for these regions from other inventories

355 are listed in Table 3.

Table 2: Assimilation experiments with the choice of emission inventories and assimilated observations used in the global inversion between

May-September 2023.

Experiment Biomass burning emission inventory  Assimilated observations®

1 QFED -

2 QFED TROPOMI

3 QFED TROPOMI+TCCON
4 GBBEPx -

5 GBBEPx TROPOMI

6 GBBEPx TROPOMI+TCCON
7 GFAS -

8 GFAS TROPOMI

9 GFAS TROPOMI+TCCON
10 CFFEPS? -

11 CFFEPS TROPOMI

12 CFFEPS TROPOMI+TCCON

* The inversions based on CFFEPS emissions inventories in North America uses GFAS global emissions for the regions outside of North America.
® No observations are assimilated (-), corresponding to the model a priori or control run with a particular biomass burning emission inventory.

14
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360 4 Results and discussions
4.1 Comparison between prior and posterior emissions

Table 3 shows the total regional BB CO emissions from the a priori bottom-up inventories and the a posteriori emission
estimates obtained from the TROPOMI-only assimilation and the joint TROPOMI and TCCON (i.e., TROPOMI + TCCON)
assimilation. For the inversion period between May and September 2023, there is a large discrepancy in the a priori emissions

365 between the three global inventories, with GFAS producing the highest global emissions of 230.3 Tg CO, which is a factor of
1.3 times GBBEPx (182.6 Tg CO) and 1.4 times QFED (164.5 Tg CO) emissions. These differences are more substantial in
the regions of North America (NA) and Siberia (SI), where the boreal wildfires play an important role. In NA, the GFAS
emissions are greater than the emissions from GBBEPx and QFED by a factor of 2.1 and 2.5, respectively. In SI, GFAS is a
factor of 3.1 and 2.1 greater than GBBEPx and QFED, respectively. Although all GFAS, GBBEPx, and QFED are based on

370 estimates of FRP derived from satellite products (i.e., MODIS and/or VIIRS), there are many driving factors that cause the
differences in the total emissions (Li et al., 2020; Liu et al., 2024), which can reach up to an order of magnitude in a finer
spatiotemporal scale (Stockwell et al., 2022). In contrast, the CFFEPS emissions in NA are comparable to GFAS despite using

a different approach for estimating the emissions.
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Table 3: Biomass burning CO emissions estimates of a priori and a posteriori in the major source regions based on Fig. 2 for the period
375 between May and September 2023. The a posteriori estimates are denoted by the ensemble mean and standard deviation.

A priori* (Tg CO) A posteriori TROPOMI-only (Tg CO) A posteriori TROPOMI + TCCON (Tg CO)
Region
QFED GBBEPx GFAS  CFFEPS® QFED GBBEPx GFAS CFFEPS QFED GBBEPx GFAS CFFEPS
North
110.4 + 112.8 1272+ 125.6 + 1112+ 1153 + 130.1 1293 +
America 37.1 42.7 91.0 90.2
19.8 19.9 17.2 17.7 15.5 15.1 12.9 12.5
(NA)
. 104.6 + 1172+ 100.3 + 103.4 + 1178+ 100.8 +
Africa (AF) 65.1 87.4 53.5
17.3 18.8 17.4 16.2 17.7 16.4
P 445+
Siberia (SI) 16.5 11.1 345 29.4+9.8 24.1£85 126 29.1+£82 228+6.9 46.4+9.2
South
272+ 274+ 249+
America 22.1 22.1 19.1 28.1+£9.7 27.0+9.4 25.0+09.1
10.3 10.3 10.0
(8A)
South Asia
& Australia 13.8 12.1 16.3 172 +6.4 156+6.3 19.5+6.8 17.2+£5.7 16.1+£59 202+6.1
(SA&A)
Rest of the
World 9.8 72 5.8 14.1+£3.0 12.5+3.0 122+32 189+2.7 126+2.2 162+2.7
(ROW)*
3029 + 309.6 + 3286+ 3079+ 311.6+ 338.7+
Global 164.5 182.6 230.3
66.6 66.8 67.1 58.0 57.1 56.4

* A priori Fossil fuel and biofuel emissions are provided by CEDS inventory and biogenic emissions are obtained from MEGAN version 2.1 in all the cases.
® The global inversions with CFFEPS BB emissions uses GFAS global BB emissions for the regions outside of North America.
¢ The source of CO in the rest of the world also includes the oxidation of methane and non-methane hydrocarbons.

380 After assimilating the TROPOMI data, the a posteriori emissions suggest a large increase in global emissions from the
a priori, with global a posteriori emissions of all inventories in close agreement with each other. We estimate global fire
emissions of 303+67 Tg CO, 310+67 Tg CO, and 329+67 Tg CO for QFED, GBBEPx, and GFAS, respectively. In North
America, the a posteriori emission estimates are also consistent, with estimates of 12618 Tg CO, 12717 Tg CO, 113+£20 Tg
CO, and 110£20 Tg CO for CFFEPS, GFAS, GBBEPx, and QFED, respectively. For most other regions, the inferred emissions

385 all agree with within the a posteriori uncertainty except for Siberia, where the a posteriori emission estimates are 45+13 Tg
CO, 2449 Tg CO, and 29+10 Tg CO for GFAS, GBBEPx, and QFED, respectively. The discrepancy between the a posteriori
Siberian emissions could be due to the fact that the assimilation did not ingest TROPOMI observations poleward of 60°N, and
there are large emission sources poleward of 60°N, as can be seen in Fig. 3. This discrepancy might also come from the large
difference between a priori emissions in the SI region. The overall agreement between the a posteriori emission estimates

390 obtained with the different a priori emissions suggest that TROPOMI provides sufficient information to constrain the regional

emission estimates.
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The joint TCCON and TROPOMI inversion produces a posteriori emission estimates that agree to within 5% of the a
posteriori emissions from the TROPOMI-only inversion, but these differences vary among the source regions. At the global
scale, the a posteriori estimates remain within 1o uncertainty, implying that the increment from joint inversion closely matches

395 that from the TROPOMI-only assimilation. Previous inversion studies with CO, and CO, measurements showed that
combining satellite total column observations with surface in situ measurements (Byrne et al., 2020; Kim et al., 2024; Wang
et al., 2018) benefit from the complementarity between the two types of measurements and provide posterior fluxes that are
better informed by measurements. We will discuss later in this section the spatiotemporal distributions of the a posteriori
emission in comparison with the a priori between all the inventories. Table 3 shows that the joint inversion reduces the

400 uncertainties in the posterior relative to the inversion using only the TROPOMI data. We find a global uncertainty reduction
of nearly 15% in all the a posteriori emission estimates when including the standard TCCON XCO in the inversion. This
reduction is likely due to the additional temporal information and higher accuracy provided by TCCON, compared to
TROPOMI. The reduction of uncertainty varies between the source regions. In the Northern Hemisphere extratropics, where
most of the TCCON stations are located, the uncertainty reduction increases to 29% in NA with CFFEPS emissions, followed

405 by Siberia with GFAS emissions (26% reduction of uncertainty). On the other hand, for the tropics and subtropics in the
southern hemisphere, where there are fewer TCCON stations, we find smaller reductions in uncertainties (between 5% and
10%). Goudar et al. (2023) investigated the uncertainties in estimating CO emissions from isolated fires using TROPOMI
assimilation. They reported that these estimated uncertainties primarily arise from errors due to spatial under-sampling of the
CO field by TROPOMI observations and errors due to assumptions about the temporal variability of the emissions. Although

410 we did not examine individual fire events, the lower overall uncertainty from the joint TCCON and TROPOMI assimilation
suggests an improved handling of the spatial under-sampling error in TROPOMI-only assimilation, which is reflected in the
uncertainty estimates. This improvement could be particularly important, since the a priori emissions and their errors were

kept fixed between the joint and TROPOMI-only assimilations.
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415 Figure 3: Comparison of the temporal variability of the CO emissions estimate for the priors (blue), posteriors using TROPOMI-only
assimilations (green), and posteriors using joint TROPOMI and TCCON assimilations (red), among the three global biomass burning
inventories, including (a-¢) QFED, (f-j) GBBEPx, and (k-0) GFAS used as the priors, and for the major inversion source regions as shown
in Fig. 2.
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420  Figure 4: Comparison of the spatial distribution of the time-averaged biomass burning CO emissions in the (a-c) a priori, (d-f) a posteriori
— a priori using TROPOMI-only assimilation, and (g-i) a posteriori — a priori using joint TROPOMI and TCCON assimilation, and among
three global biomass burning inventories.

To better understand the influence of assimilating TCCON XCO together with the TROPOMI XCO, we examine the

temporal and spatial variability of the estimated emissions. Fig. 3 shows a priori emissions in blue, a posteriori emissions from

425 the TROPOMI-only assimilation in green, and the a posteriori emissions from the joint inversion in red between May and
September. In North America, QFED shows only slight variations in the a priori emissions (Fig. 3a). GBBEPx (Fig. 3f) has

some degree of improvement over QFED at a few fire episodes; however, GFAS (Fig. 3k) significantly improves on QFED

and exhibits reasonable agreement in magnitude and temporal variability with the a posteriori emissions from the TROPOMI-

only assimilation. Comparison of the spatial distribution of the a priori emissions (Fig. 4a-c) indicates that two main regions

430 ofboreal wildfires in (eastern) Quebec and (western) Alberta and British Columbia, Canada, correspond to the large differences
in regional emissions among the inventories, although their overall global spatial distributions are similar. The a posteriori — a

priori emissions from the TROPOMI-only inversions confirm the underestimate of CO emissions in QFED and GBBEPx, in
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those regions in Canada (Fig. 4d-f). GFAS, unlike the other two inventories, has significantly larger emissions from wildfires
across Canada, so that they are comparable with the magnitude of the a posteriori emissions in that region (see Table 3 for a
435 comparison of total emissions).

In Siberia, the a posteriori emissions provide an enhancement on the a priori in a few episodes in July and August (Fig.3
¢,h,m), indicating an overall low level of emissions from all inventories. GFAS, followed by QFED, has not only higher
emissions in the same locations as GBBEPx, but also has a greater area of BB emissions. However, the a posteriori emissions
suggest that the GFAS inventory required larger adjustments in the central and western part of SI, suggesting errors in the

440 spatial allocation of the a posteriori fire emissions in Siberia. In Africa and South America, the emissions enhancement occurs
in late July through the end of the inversion period in September, which are shown in Fig. 3d,i,n. For these regions, GBBEPx,
followed by QFED, provide a closer estimate to the a posteriori than GFAS, while the posterior emissions from the TROPOMI-
only and joint inversions remain nearly identical (Fig. 4d-f versus 4g-i). This could be because there are very few TCCON
measurements in the Southern Hemisphere near that region. In South Asia and Australia, the emissions enhancement occurs

445 only in two episodes in early May and early September, which remain nearly consistent among the inventories. Finally,
comparing the regional a posteriori emissions from the TROPOMI-only and joint inversions (Fig. 3k,1,m,n,0), we find different
temporal variability of the updated emissions, which are distinctive for several wildfire episodes. Additionally, we observed
improvements in the correlation between analogous posterior timeseries across different BB inventories. For example, the
temporal correlation between the QFED and GFAS posterior emissions in North America increased from r = 0.85 in the

450 TROPOMI-only assimilation to 7 = 0.90 in the joint TROPOMI and TCCON assimilation. These findings suggest that the
higher temporal resolution of the TCCON measurements provide additional constraints on temporal variability of the emissions
in the inversion, which is consistent with findings from previous studies on CO; inverse modelling (Byrne et al., 2020, 2024;
Chevallier et al., 2011).

Overall, these findings, along with the results from Observing System Simulation Experiments (OSSEs) demonstrated

455 in Appendices A and B, suggest that although TCCON alone may not significantly constrain spatiotemporal variability in the
major inversion regions—Ilikely due to the limited number of measurement sites—it is still clear that adding TCCON
measurements to the assimilation reduces the uncertainty estimates everywhere. We found that the reduction of the uncertainty
by adding TCCON measurements becomes more significant during high BB emission episodes or wildfire events. Later, in
Section 4.3, we evaluate the a priori together with the a posteriori from both TROPOMI-only and joint inversions using

460 independent measurements.

4.2 Uncertainty reduction and the information content

We evaluate the performance of the inversion for constraining BB CO emissions by quantifying the information content
provided by the TROPOMI and TCCON data. To achieve this, we use two approaches: (i) computing the reduction of
uncertainty in the model space and (ii) computing the degree of freedom for signal (DOFS) in the ensemble sub-space. Using

465 these methods will quantify the information provided by the two observing systems individually. In the first approach, we
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compute the a priori and a posteriori error variance for each grid point, which is obtained as part of the solution for LETKF

processing in CHEEREIO. The reduction of error variance can be used as a metric for evaluating the inversion performance

(Feng et al., 2009); as such, a greater error variance reduction at a grid point indicates that more reliable information from

observing system is available to constrain emissions for that grid. Accordingly, we define a normalized error reduction (¢) for
470 each grid point as follows:

(af?

g=1- @z’ (3)

where (6/)? and (a)? denote the error variance of the a posteriori and the a priori, respectively, for the i emissions in the

state vector. &; varies between 0 to 1, with greater values indicating a higher reduction of a priori uncertainties. Although the
LETKF method approximates the a posteriori uncertainty due to the reduced rank representation associated with the limited
number of ensembles used to construct the error covariances (Livings et al., 2008), it still provides useful information with

475 which to evaluate the analyses.
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Figure 5: Comparison of the time-averaged (May-September 2023) a posteriori error variance reduction, €, of (a-c) TROPOMI-only
assimilation and (d-f) joint TROPOMI and TCCON assimilation for three global biomass burning inventories used as a prior.

Fig. 5 shows the error variance reduction, €; , for the a posteriori emissions based on the three different global BB

480 inventories (i.e., QFED, GBBEPx, and GFAS) using TROPOMI-only measurements (Fig. Sa-c) and using joint TROPOMI
and TCCON measurements (Fig. 5d-f). The rate of reduction of uncertainties implies that the estimate of the posterior is more
reliable at those location with greater uncertainty reduction. We find greater reduction of uncertainty in the joint inversion
compared to the inversion with TROPOMI-only data, primarily in NA and in the vicinity of TCCON stations. For example,

with QFED as the a priori emissions, the rate of reduction is greater in boreal Canada, central and southern part of the United

485  States, western Europe, eastern Asia, Siberia, and Australia. This indicates where TCCON provide additional information to

further constrain the emissions based on the QFED BB inventory.
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Figure 6: Computed degree of freedom for signal in ensemble subspace (DOFS;) associated to the TROPOMI-only (blue) and joint
490 TROPOMI and TCCON inversion (red) for three global biomass burning inventories (QFED, GBBEPx, GFAS) used as a priori.

In the second approach, following Zupanski et al., (2007), we compute the degree of freedom for signal (DOFS)
approximated for the ensemble-based assimilation method. The DOFS, as defined by Rodgers (2000), quantifies the number
of pieces of independent information in an observing system toward constraining the state vector of dimension n (also
equivalent to the total number of grids in the model). It is defined as

DOFS,, = tr(Inxn = Pixn (PRxn)™") = tr(Anxn), “

495 where P2, and P, are analysis and background error covariance, I,,5, denotes the identity matrix, and A, »,, represent the
averaging kernel matrix. To compute A,, and then DOFS,,, a Jacobian matrix must be constructed in full rank, requiring
extensive computational cost (e.g., Varon et al., 2022). In an ensemble-based approach, computing the Jacobian matrix in the
state space is impractical since the limited number of ensembles are not sufficient to describe full rank error covariances.
However, those quantities can be approximated for the ensemble subspace with reduced rank error covariance matrices, so

500 that the information provided by the observation system is measured relative to the maximum independent pieces of
information determined by the ensembles size, k. Therefore, the DOFS,, is defined as,

DOFS. = tr(Iexk + Crxac) ™ Croxic) = 7 (Arrc), (5)
where Cj.«j denotes the symmetric information matrix, I, is the identity matrix, and A, represent an equivalent averaging
kernel or influence matrix, all obtained in the ensemble subspace. The derivation of Eq. (5) started from Eq. (4) is described
in Zupanski et al. (2007) and Zupanski (2005). Subsequently, we can compute the information matrix, €y, either within the

505 LETKF calculation of CHEEREIO or as a postprocessing step if all the outputs from the ensembles members and the control
run are already stored. Accordingly, every element of matrix C, are computed as

C;; =2z, (6)
where z is the vector of dimension, m (number of observations) and is defined as

1
z,(m) = R,%,, (Hy(x) — Hp(x)), ™

where the observation operator H,, is applied to the perturbed, x;, and unperturbed state vector x, and weighted by the inverse

of square root of observation error covariance R, ,,. Migliorini (2013) used the same method in the square root filter, where
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510 the forecast error covariance matrix is approximated by the sample covariance matrix, which is produced by the forecast of
each ensemble member. Once matrix C is constructed, one can use Eq. (5) to obtain Ay, and the DOFS, for the ensemble
subspace. Note that using this approach, there are at most k — 1 independent pieces of information for the entire assimilation
period. Thus, with £ = 24 in this work, the computed DOFS may vary between 0 and 23, mainly depending on the
characteristics of the assimilated observations, such as their density and error statistics. Although this method does not produce

515 DOFS in the state space of the emissions (Zagar et al., 2016), it enables a straightforward comparison of the information
content across different experiments.

The computed DOFS for different inversions are shown in Fig. 6. Adding TCCON data to the inversion increases the
DOFS from the TROPOMI-only inversion for all the cases. These values increase from 11.1, 11.4, and 12.7 for the TROPOMI-
only inversion to 15.5,15.6, and 16.9 for the inversion with TROPOMI and TCCON data using QFED, GBBEPx, and GFAS

520 emissions, respectively. The higher DOFS from GFAS compared to the other BB inventories is also in agreement with its
higher reduction of uncertainty in Fig. 5. This likely implies that the difference of the perturbed and unperturbed forecast of
the state vector, which approximates their covariances, correlates better with the actual emissions, such that the greater

variations in GFAS emissions result in higher DOFS.

4.3 Evaluation using ground-based observations

525 We evaluate the inversion against TCCON, NDACC total column retrievals, and in sitt WDCGG measurements to
better understand the constraint from each measurement type used in the inversion. Table 1 shows the measurement sites with
their geographical information (latitude, longitude, and altitude above sea level). First, we evaluate the results against all the
TCCON measurements from May to September 2023. In Fig. 7, the model is evaluated against hourly averaged TCCON data,
with the a priori shown in blue and the a posteriori in red from either the TROPOMI-only inversion (in the left) or the joint

530 TROPOMI and TCCON inversion (in the right). The statistics indicate that the inversion significantly improves on the prior
for all the cases. Examination of the a priori models shows that the GBBEPx simulation slightly improves on the QFED
simulation, with a correlation of R? = 0.31 compared to R? = 0.27 with QFED. The GFAS simulation has the highest a priori
correlation (R? = 0.54), resulting in the best a posteriori agreement with TCCON, with R? = 0.82 and R? = 0.87 for the
TROPOMI-only and TROPOMI + TCCON assimilation, respectively. The timeseries plots in Fig. 7 shows the improvement

535 of GBBEPx on QFED, with better agreement between the simulation and the TCCON measurements when there are wildfire
enhancements of XCO. The GFAS simulation shows a significant improvement during those peaks, indicating that the GFAS
simulation better captures the time variability in the measurements. The evaluation of the joint inversion using TROPOMI and
TCCON XCO data against the TCCON measurements show a further improvement of the inversions; both the slope and the
correlation coefficients are closer to 1.0 than the results from the TROPOMI-only assimilation. This is expected, because the

540 same TCCON data are used in the inversion and the evaluation (Fig. 7d,h,l).
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Figure 7: Evaluation of the model a priori (blue) and a posteriori from TROPOMI-only assimilation (red) against TCCON measurements
(green) of all sites together using a timeseries and scatter plot based on (a, b) QFED, (e, f) GBBEPX, and (i, j) GFAS biomass burning
emissions (left side). A similar evaluation of the model a priori against TCCON, however with a posteriori from joint TROPOMI and
TCCON assimilation (red) using (¢, d) QFED, (g, h) GBBEPx, and (k, 1) GFAS as the prior biomass burning emissions estimate (right side).
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Figure 8: Evaluation of the time-averaged model a priori (blue), a posteriori using TROPOMI-only assimilation (orange), and a posteriori
using joint TROPOMI and TCCON observations (red) against independent NDACC and in situ measurements between May-September
2023. Each panel is associated with a particular prior biomass burning emissions from bottom-up inventories, including (a, b) QFED, (c, d)
GBBEPx, and (e, f) GFAS. The top row of each panel shows the correlation of the model using prior or assimilation using posterior with
555  respect to the measurements, whereas the bottom row represents the mean bias and the standard deviation of the model or assimilation with

respect to the measurements.
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To assess the impact of TCCON on the performance of the inversion more objectively, we also compare the inversion
results with independent NDACC column measurements and surface in situ measurements in Fig. 8. The correlation, mean

560 bias, and standard deviation relative to the measurements are shown for the model a priori (QFED, GBBEPx, and GFAS) in
blue, the a posteriori from the TROPOMI-only assimilation in orange, and the a posteriori from the joint TROPOMI and
TCCON assimilation (i.e., TROPOMI+TCCON) in red. We find a higher correlation coefficient for both a posteriori estimates
(i.e., TROPOMI-only and TROPOMI+TCCON) relative to the a priori estimates in almost all the cases, while there is an
additional increase in correlation for the joint inversion compared to the TROPOMI-only inversion. The a posteriori from the

565 TROPOMI-only assimilation provides a small reduction of the mean bias and standard deviation, and by adding TCCON to
the assimilation, there is further reduction at several sites (Tsukuba, St. Petersburg, MNM, RYO, YON). The added
improvement in the posterior XCO obtained by adding the TCCON data to the inversion differs between sites. For the NDACC
sites close to or downwind of TCCON sites, such as Tsukuba, Lauder, Wollongong, and St. Petersburg, the correlation
coefficient increases more by adding TCCON to the inversion. The evaluation at the Arrival Heights NDACC station located

570 in a remote area in Antarctica, far from both the TROPOMI and TCCON assimilated observations, show an improvement in
the a posteriori that suggests that the assimilation improves global background concentrations of CO. However, at the
Altzomoni NDACC site, located about 75 km southeast of Mexico City and almost 2 km higher in altitude, we found little
improvement after the assimilation. It is likely that the local topography cannot be captured in our global model, which has a
2°x2.5° spatial resolution. In addition, the local ambient atmospheric conditions, such as stability and humidity in this region,

575 causes most of the fire emissions to stay within the boundary layer and neither model nor the assimilation are capable of
capturing such effects (Sha et al., 2021).

For the surface in situ measurements, we also find an increase of the correlation coefficient between the a priori and the
a posteriori using the TROPOMI+TCCON assimilation, but with a smaller improvement than we see at the NDACC stations,
with the exception of the JFJ and MKN stations, where there is a larger improvement. The relatively smaller improvement

580 compared to NDACC may primarily be attributed to the fact that the surface sites have a larger representativeness error given
our 2°x2.5° grid resolution, which limits the ability of the assimilation to significantly correct for them. For example, for CGR
station, the local atmosphere is influenced by a land-sea wind regime that cannot be resolved by the relatively coarse grid
resolution of the model. In addition, the vertical sensitivity of the TCCON and NDACC data based on their averaging kernels
may partly impact these evaluations.

585 Similar to the evaluation against NDACC, we find slight improvements in the mean bias and standard deviation at
WDCGG surface stations. In most of the cases, adding TCCON to the assimilation reduces the uncertainties while the mean
bias remains almost identical to the bias of TROPOMI-only inversion. Comparing the results from different inventories
illustrates that the differences in the a posteriori emissions, either from the TROPOMI-only or TROPOMI + TCCON inversion,

are insignificant.
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590 4.4 Assimilation performance for constraining boreal wildfires emissions in North America

Our posterior emissions from the inversions indicated that North America has the highest level of BB emissions and
contributed one-third of the global total in summer 2023. The emissions primarily came from the boreal forest across Canada,
which were poorly estimated by the bottom-up emissions inventories with a 31% - 67% underestimation in this region during
the study time period. Thus, we take a closer look at the spatial and temporal characteristics of the XCO over North America

595  to better understand the localized and episodic behavior of the fire emissions with respect to the different inventories. In
addition to the three global BB emissions inventories discussed in the previous sections, here, we also include a regional
bottom-up emissions inventory in North America from CFFEPS (Chen et al., 2019) provided by ECCC to compare with those
global emissions. Note that for our global simulation with CFFEPS emissions in North America, we use GFAS for the global
emissions which are replaced by CFFEPS in North America.

120 Averaged CO concentrations in North America

—@- TROPOMI —»=- GBBEPx - Model a priori == GFAS - Model a priori =»- CFFEPS - Model a priori
—»= QFED - Model a priori —=— GBBEPx - Ensemble mean —=— GFAS - Ensemble mean —=— CFFEPS - Ensemble mean
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Figure 9: Evaluation of the domain-averaged CO concentrations (XCO) of a priori model (dashed lines) and a posteriori using TROPOMI
assimilations (solid lines) between four different inventories in North America, including QFED (blue), GBBEPx (green), GFAS (red), and
CFFEPS (purple) against TROPOMI XCO measurements (black). Three extreme wildfire episodes across boreal regions are chosen for
comparison of the assimilation results using different inventories and comparison of the assimilation with a priori model.

605 We first focus on the temporal variability of the domain-averaged XCO in North America from the a priori model and
a posteriori assimilation using TROPOMI inversion with the four inventories. In Fig. 9, the model a priori with each emission
inventory is shown in dashed lines with an ‘x” marker, the a posteriori is shown with solid lines with a square marker, and the
TROPOMI measurements themselves are indicated by the black line with circles. Fig. 9 shows that the a priori using QFED
and GBBEPx emissions have similar XCO in the entire period, except a slightly higher level of XCO with GBBEPx during

610 May and June. On the other hand, the a priori XCO with GFAS and CFFEPS are both greater than QFED and GBBEPx in
magnitude (i.e., ~10 ppb higher) and more variable. Although, the model estimated CO has similar trends between CFFEPS
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and GFAS, the two inventories produce XCO with different temporal variability and both underestimate the XCO observed
by TROPOMIL. In fact, during the large emissions episodes from wildfires in mid-May and late June, CFFEPS has higher
emissions and better captures the variability in TROPOMI XCO, while from July to September, they produce comparable

615 levels and variability of CO with slightly higher CO for GFAS at the peaks in late July and early August.

Nevertheless, the inversion using TROPOMI suggests that all the a posteriori emission estimates are a significant
improvement from the a priori after about a month, and show reasonable agreement with the temporal variability of the
TROPOMI measurements. The a posteriori XCO also suggests that the seasonal variability that is usually characterized by
decreasing CO in summer, due to the higher rate of oxidation with OH radical, is balanced by the higher rate of BB CO

620 emissions estimated in the inversions, resulting in an almost uniform XCO during the summer-fall 2023. The a posteriori with
QFED and GBBEPx provides XCO that agrees with TROPOMI measurements better than the a priori of GFAS and CFFEPS,
even though the GFAS and CFFEPS priors produce XCO that are a closer estimate to the TROPOMI XCO. However,
comparing the XCO between the four inversions suggests that CFFEPS, followed by GFAS, perform better at the XCO peaks,
and thus can better capture the variability in the TROPOMI measurements.

625 We looked closely at three extreme wildfire episodes that occurred across the Canadian boreal forest at different times
and regions in summer 2023 to better examine the spatial characteristics of the a priori and a posteriori estimates at the time
of the fires. As shown in Fig. 9, the first episode covers five days of large wildfires in Alberta between 19% and 23" of May,
the second episode of extreme wildfires occurred in Nova Scotia and Quebec between the 22" and 26" of June, and the third
episode was in British Columbia and the Northwest Territories between the 17" and 19 of July. To evaluate the inversion

630 results from these events, we compare in Fig. 10 the model a priori (M) and a posteriori analysis (A) with the TROPOMI
observations to obtain analysis minus observations (A — O) and model minus observations (M — O) differences for the four
emissions inventories during the three extreme wildfire episodes in North America. A comparison of M — O between the
different inventories for all the episodes reveals that CFFEPS, followed by GFAS, has a smaller underestimation of CO
concentrations compared to QFED and GBBEPx. Although the reduction of this bias occurred over a large domain, including

635 downwind of the emissions, the reduction is more significant in the vicinity of the wildfire emissions. Our results comparing
different inventories are consistent with our findings in Fig. 9, which show that CO concentrations from the a priori are
underestimated due to the lower emissions in the inventories (Fig. 4), in the same order as observed here. We find similar
improvements in our a posteriori analysis between the different inventories, in which A — O exhibits lower bias with CFEEPS,
followed by GFAS, in comparison with QFED and GBBEPx. Although the CFFEPS a posteriori XCO is significantly closer

640 to the TROPOMI observation, the QFED a posteriori still shows a slight improvement on the CFFEPS a priori, indicating the

larger impact of assimilating TROPOMI observations compared to providing a better prior.
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Figure 10: Comparison of the difference between model (M) or assimilation (A) and TROPOMI XCO observations (O) (i.e., M—O or A —
0), for three extreme wildfire episodes across boreal regions. Episode 1: May 19-23; episode 2: June 22-26; episode 3: July 17-19.
Assimilation is based on TROPOMI observations and uses different inventories in North America as the prior CO emission estimate. The
model and assimilation fields were transformed using the TROPOMI a priori and averaging kernels.
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Figure 11: Taylor diagram for evaluation of the assimilation and a priori model using four different biomass burning inventories against
TCCON XCO measurements at East Trout Lake (ETL). (a) Assimilation is preformed using TROPOMI-only (square) and joint TROPOMI
and TCCON (triangle) data, while their correlations and standard deviations are compared with the model a priori (coloured circles) and
XCO measurements (black circle). (b) Evaluation of the mean bias and error of the priors (blue), assimilation using TROPOMI-only (green),
and assimilation using a joint TROPOMI and TCCON (red).

We also evaluated the a priori and a posteriori XCO with TCCON data from East Trout Lake (ETL). In Fig. 11, the a
priori XCO are shown in circles, the a posteriori from the TROPOMI-only assimilation in squares, and the a posteriori from
the joint TROPOMI+TCCON assimilation in triangles. It shows that the a priori with QFED and GBBEPx have not only low
correlation with the measurements, but also have low variability. The a priori with CFFEPS and GFAS improve on the
correlation but more significantly on the variability, in addition to the mean bias (Fig. 11b) that is reduced by more than a
factor of 2. The a posteriori for all cases provides significant improvements on the a priori by increasing the correlation and
lowering the mean bias and uncertainty, resulting in a closer estimate to the measurements. Among all the a posteriori cases,

the joint TROPOMI and TCCON inversion has a noticeable level of improvement with increased correlation and slightly
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smaller mean bias and uncertainty, in addition to adjusting the variability towards the measurement’s variability. A comparison
among the inventories suggests that the joint inversion using CFFEPS provides the highest correlation, lowest uncertainty, and
nearly unbiased estimates with matching variability with the measurements. The best agreement between the joint inversion

and the TCCON measurements at ETL is with CFFEPS, followed by GFAS, then GBBEPx, and QFED.

670 4.5 Implications for vertical sensitivities in the inversion

In this section, we examine the potential use of the experimental TCCON XCO product from the mid-infrared (InSb)
detector available at ETL for the inversions of BB CO emissions. Since the measurements provide us with an independent set
of XCO, with distinct averaging kernels, we take those as separate pieces of information to be combined with the standard
TCCON data into our joint TROPOMI and TCCON inversion. The vertical profile of the averaging kernels in the InSb CO

675 products (Fig. 1c) has higher sensitivity to the surface and lower troposphere, and lower sensitivity to higher altitudes compared
with the standard XCO. Thus, we aim to understand the added benefit of assimilating these data for constraining CO emissions
in the inversion. To achieve this, we conducted inversions using joint TROPOMI and TCCON data that incorporate three
variations of the TCCON product, including the standard XCO, the InSb XCO, and the combined InSb and standard TCCON
product. The inversions show nearly identical improvements between the posteriors and the prior when using the CFFEPS

680 inventory, indicating a less than 1% discrepancy of total BB emissions in North America. However, there is a noticeable
difference in their spatial distributions, especially in the wildfire hotspots in British Colombia, Alberta, and Quebec (see Fig.

S1 in the supplements).
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Figure 12: Evaluation of the assimilation and a priori model using CFFEPS biomass burning inventories against tall tower measurements at

~ 60 m above sea level altitude at East Trout Lake (ETL). (a-b) a priori model (blue), (c-d) assimilation using joint TROPOMI and TCCON
standard XCO TCCON data (red), (e-f) assimilation using joint TROPOMI and InSb XCO TCCON data (yellow), and (g-h) assimilation
using joint TROPOMI and the standard and InSb TCCON data (orange) are compared with tall tower measurements (green).

690

To evaluate the performance of these inversions, we use two independent in situ datasets, tall tower measurements from

Environment and Climate Change Canada (Chen et al., 2014) and aircraft profiles from the National Oceanic and Atmospheric

Administration (McKain et al., 2024; https://gml.noaa.gov/aftp/data/trace_gases/co/pfp/aircraft/) at ETL. We compare the tall

tower measurements with the a priori (in blue) in Fig. 12a,b and the a posteriori (in red) from the joint TROPOMI and TCCON

assimilation using standard TCCON in Fig. 12 c,d, the a posteriori (in yellow) from the joint assimilation using the TROPOMI

and InSb TCCON data in Fig. 12e,f, and the a posteriori (in orange) from the combined TROPOMI plus the standard and InSb

695

TCCON data in Fig. 12g,hf. We find a significant improvement in all the inversion cases from the a priori, especially at the

concentration peaks, resulting in an increase in the correlation coefficient and slope of the regressions.
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Figure 13: Evaluating vertical profiles of the joint inversion using TCCON standard CO (red), InSb CO (yellow), combined standard and
InSb CO (orange), and a priori model (blue) against aircraft measurements profile from NOAA at ETL (green squares), in (a) July 7, (b)
700  July 16, (c) August 13, and (d) August 20 of 2023.

The evaluation of the inversions shows that the assimilation with TROPOMI and the InSb XCO data improves the
correlation from the case with standard TCCON XCO (from R? = 0.68 to R? = 0.78), although the slope of the regression
has slightly decreased (from slope = 0.72 to slope = 0.68). However, the inversion using the combined standard and InSb
TCCON products improves on both correlation coefficient and the slope of the regression (slope = 0.74 , R? = 0.77) with

705  respect to the inversions using the standard TCCON. This suggests that the inversion using the InSb XCO better captures the
variability of CO near the surface, likely associated with the greater sensitivity of these data to lower altitudes, which improves
the sensitivity of the data to surface emissions in localized regions with short-range transport. The slightly lower slope is likely
due the greater level of underestimation of CO at the peak concentrations compared to the standard TCCON inversion. This
might be because the lower sensitivity of the InSb XCO to the mid-troposphere than the standard CO, could reduce the

710 measurement sensitivity to CO plumes at higher altitudes or in the background, which is normally captured through longer

range transport. However, the combined standard and InSb CO TCCON assimilation not only captures the variability better
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than the standard CO assimilation, but also provides us with reasonably improved estimations of the background CO. Thus,
adding the InSb XCO dataset potentially benefits the inversion by providing a better constraint on the surface BB CO
emissions.

715 Furthermore, an evaluation of the vertical profiles of CO from the a priori and a posteriori simulations against aircraft
in situ measurements by NOAA at ETL in Fig. 13 shows that there is a consistent improvement with the joint inversion using
different variations of TCCON data (the inversion using standard TCCON CO is shown in red, whereas the inversion using
the InSb TCCON CO is shown in yellow), and the combined standard and InSb TCCON CO (in orange). Note that through
the inversion process, we update only CO emissions, without directly updating concentrations. The results indicate that

720 replacing the standard TCCON with the InSb product improves the agreement with the measurements at lower altitudes (1-2.5
km), while at higher altitudes (2.5-3.5 km) the standard TCCON assimilation performs slightly better. Despite the fact that a
perfect constraint on vertical profiles cannot be obtained by assimilating only total column measurements, due to the limited
vertical sensitivity, using both the standard and InSb CO data together in the assimilation maintains a balanced and reasonable
agreement with the independent measurements at both lower and higher altitudes. This suggests that using all the TCCON

725 standard and InSb CO measurements in the inversion provides an improved constraint on the fire plume at a broader range of
altitude. This is likely associated with uniformly larger sensitivities with altitude compared to the inversion using each of the
TCCON XCO datasets individually. Note that we have not found a similar level of improvement from adding the ETL InSb
XCO dataset to our inversions when we evaluate against aircraft in situ data at the Park Falls TCCON station (not shown),
which is about 1700 km to the southeast of ETL. This suggests that, although adding the InSb XCO to the inversion benefits

730 the inversion results, it has a more local effect, and may not provide a substantial additional constraint on the regional/global
scale. Therefore, providing the InSb product at other TCCON locations is recommended for a better constraint on the emissions

on larger scales.

5 Summary and conclusions

We used total-column measurements from the TROPOMI satellite and the TCCON ground network to infer CO biomass

735  burning emissions during the extreme North American fire season between May and September 2023. Using the CHEEREIO
toolkit, we optimized CO emissions globally at a 2° x 2.5° grid resolution every 3 days. One objective of this work is to better
understand the influence of the TCCON measurements in providing additional constraints for quantifying CO emissions
through a joint TCCON and TROPOMI inversion. Despite the limited spatial coverage, TCCON has substantially more
observations in time with high accuracy on column averaged dry mole fraction measurements. This motivates the evaluation

740 of the joint inversion in comparison with the TROPOMI-only inversion to constrain emissions from localized and episodic
wildfires. A second objective is to evaluate the global QFED, GBBEPx, and GFAS a priori BB emission inventories, as well

as the regional North American CFFEPS emissions, and to assess their impact on the inversion analyses.
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All of the inversion results indicate that the priors significantly underestimate the BB CO emissions. Based only on
TROPOMI observations, the global posterior emission estimates for QFED, GBBEPx, and GFAS are 302.9+67, 309.6+67,
745 and 328.6+67 Tg CO, compared to prior estimates of 164.5, 182.6, and 230.3 Tg CO, respectively. For North America, the
posterior emissions for QFED, GBBEPx, GFAS, and CFFEPS are greater than the priors by a factor of 3.0, 2.6, 1.4, and 1.4,
respectively. Adding TCCON through a joint inversion with TROPOMI makes little difference to the global total and regional
estimates (< 5%), but it improves the temporal variation as well as the spatial distribution in the BB hotspots. Furthermore, we
found that the joint inversion reduces the uncertainty of the posterior in all major inversion regions, but with different
750  magnitudes, reaching near 30% over North America. The spatial distribution shows that the uncertainty reductions are larger
in proximity and upwind of the TCCON measurement sites. Our evaluation of the information content in the ensemble sub-
space also indicates that the joint TCCON and TROPOMI inversion increase the DOFS by between 33 — 39%, depending on
the prior inventory. However, the additional constraints provided by the TCCON data correlate with the spatial density of the
TCCON sites (more sites in the North Hemisphere), such that a greater benefit is obtained in North America and Siberia than
755 in Africa and South America.

The evaluation of the results against the TCCON measurements and independent NDACC column and in situ surface
measurements obtained from WDCGG reveals that the TROPOMI-only inversion primarily improves on the biases while the
joint inversion further increases the correlations. The joint inversion can better capture the temporal variability of the
measurements, resulting in a more accurate estimate at the peak concentrations during the extreme wildfire events. The

760  statistics also reveal that the standard deviation and the mean errors of the difference between assimilation and measurements
are lower in the joint inversion in comparison with the TROPOMI-only inversion, providing us with more reliable estimates
of atmospheric CO. These improvements due to the joint inversion are not consistent throughout all the measurement sites we
used for evaluation; there is stronger agreement at the NDACC and in situ sites that are located in close proximity to the
TCCON measurements used in the inversion. Thus, the spatial distribution of TCCON is also a factor driving the improvements

765  in the inversion.

Our comparison using different inventories suggests that, although they all provide similar spatial distributions of BB
CO emissions, their magnitude and temporal variability can be different. For example, our evaluations against TROPOMI in
North America suggest that GBBEPx has slightly higher and GFAS has significantly higher emissions than QFED. CFFEPS
has an overall similar level of emissions to GFAS, but provides enhanced temporal variability that is in better agreement with

770 the TROPOMI measurements. However, the inversion posteriors with all inventories indicate a significant improvement on
the priors, such that the posterior obtained with QFED, which has the lowest prior emissions, provides posterior CO that is in
better agreement with the measurements than the priors based on GFAS or CFFEPS, which had higher emissions. However,
the impact of better prior emissions is not negligible; for instance, the posterior with CFFEPS produces CO which agrees better
with observations. In fact, CFFEPS, in addition to lowering spatial biases of the inversion results (Assimilation — Observation),

775 more closely captures the temporal variability of the measurements with the addition of the TCCON data in the inversion.
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Finally, we investigated the potential use of the experimental TCCON InSb CO measurements at ETL in the inversion.
The experimental TCCON XCO provides greater sensitivity than the standard TCCON XCO to the surface. The evaluation of
the inversion results against independent measurements suggests that replacing the TCCON standard CO with the InSb CO
results in posterior CO that correlates better with surface measurements, although the mean bias slightly increases. This

780 suggests that using InSb CO increases the sensitivity to the local surface emissions, but may degrade the sensitivity to
transported plumes or the background CO. However, the inversions with both the standard and InSb CO data of TCCON
improve on the standard CO inversion, provides higher correlations and lower mean biases relative to the surface
measurements. The evaluation against aircraft data also emphasizes the potential benefit of using InSb CO measurements in
the inversion for constraining surface emissions, as it improves the agreements with observations at lower altitudes.

785 Our results using TCCON measurements in a joint inversion with TROPOMI data suggest that increasing the
spatiotemporal density of observations allows the assimilation to constrain CO emissions at finer scales, providing useful
information for a more reliable estimation of local and episodic wildfires. Furthermore, we showed the benefits of the TCCON
measurements’ accuracy and temporal density when they are used jointly with TROPOMI in the inversion. However,
assimilating TCCON data alone is not sufficient to fully constrain the spatial context. Integrating more observations from

790 ground networks, such as NDACC, COCCON, and in situ observations (e.g., Schuldt et al., 2024), with satellite observations

offers the potential to greatly enhance the performance of inversion analyses for quantifying fire emissions.

Appendix A: OSSEs with joint TCCON and TROPOMI inversion

Observing System Simulation Experiments (OSSEs) are widely used to evaluate the behaviour of atmospheric

inversion or assimilation systems by using simulated observations under an idealized condition. OSSEs allow us to explore

795 how individual observation datasets or the underlying system setup (e.g., assimilation parameters) can enhance the overall

performance of the system (Lahoz & Schneider, 2014; Bocquet et al., 2015; Abida et al., 2017; Voshtani et al., 2023). Here,

we conduct twin experiments (Ghil & Mo, 1991), to evaluate the implementation of the inversion system. Specifically, we

assess the potential utility of TCCON observations for quantifying CO emissions. Additionally, we use the OSSEs to estimate

assimilation parameters and error statistics of the background and observations, using diagnostics such as chi-square tests

800 (Ménard & Chang, 2000; Tang et al., 2024) or statistics based on observation-minus-forecast (OmF) (Miyazaki et al., 2020;
Voshtani et al., 2022).
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Figure Al1: Two OSSEs within the twin experiments that start with the a priori of —50% CO emissions with respect to the true emissions as
shown in (a) true—prior and (c) posterior—true emissions; and with the a priori of +50% CO emissions with respect to the true emissions as

805  shown in (b) true—prior and (c) posterior—true emissions; time series of CO emissions in the a priori (blue), a posteriori (red), and true
(green) for the OSSE with (¢) —50% CO emissions and (f) +50% CO emissions.

Each OSSE setup involves multiple inversion runs. A “nature run” (without observation assimilation) is conducted
to generate the “true” state of the concentration fields using GEOS-Chem with unperturbed emissions—the a priori emissions
in the inversion with real observations. The true state is then mapped into the observation space by an observation operator,

810 generating simulated observations that include added observation errors and a perfect model transport assumption. A set of
“control runs” assimilates these simulated observations. Each control run may vary in terms of perturbations in the magnitude
of the emissions and/or assimilation parameter range, depending on the experiment’s objectives. In our first OSSE, we use a
combined set of simulated TROPOMI and TCCON observations and apply observation errors proportional to the retrieval
errors, based on the ratio of simulated to retrieval XCO. Emissions in the control runs are perturbed by £50% to evaluate the

815 system's performance in recovering the true emissions.
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Fig. A1 shows that the posterior (Fig. Al c,d) effectively capture and recover the spatial context of the CO emissions

globally for both control runs, which have £ 50% CO emissions in the prior (Fig. Al a,b). Additionally, the time series of total

CO emissions reveal that approximately 1.5 months (from the start of the assimilation) are required to constrain the magnitude

and temporal variability of the global CO emissions (Fig. A1 e,f). In other experiments (not shown) where perturbations are

820 applied only to major source regions (Fig. 2), we observe similar behaviour, even though the convergence rate for recovering
true emissions slightly varies. For example, emissions are recovered relatively faster in North America (within ~3 weeks),
followed by Europe (~4 weeks), likely due to a higher density of TCCON observations in these regions. This trend holds
despite the nearly globally uniform spatiotemporal distribution of quality-filtered TROPOMI observations (i.e., super
observations). In this experiment, we employ a set of previously optimized LETKF parameters and error statistics for

825  background and observation errors, described below in Appendix B.

Appendix B: Comparing OSSEs with TROPOMI-only and TCCON-only inversions against joint TCCON and
TROPOMI inversion

Similar OSSEs to those in Appendix A are conducted, using either only TROPOMI or TCCON observations, with

prior emissions perturbed by -50% in one region at a time, as shown in Table B1. We compute the mean bias and standard

830 deviation of OmF, along with the convergence time from the start of assimilation to recover the true emissions. Here, the

forecast represents a model field, driven by either a priori or a posteriori emissions, mapped into the observation space. For

the TROPOMI-only and TCCON-only inversions, we observe that biases and standard deviations generally increase across

most cases; however, the inversion remains capable of recovering the true emissions. Compared to the joint TROPOMI and

TCCON inversion, the convergence rate for the TROPOMI-only inversion slows down by up to a factor of two, depending on

835 the perturbed region in the inversion. In contrast, convergence for the TCCON-only inversion can vary significantly.

Specifically, the time to recover true emissions extends to 3 months in North America and 4 months in Europe, likely due to

the lower spatial coverage of TCCON observations in these areas compared to TROPOMI. Additionally, we find that the

TCCON-only inversion requires considerably more time to recover true emissions globally and, especially, in South

Hemisphere regions, such as Africa. The delay is primarily due to the limited number of TCCON sites in the Southern

840 Hemisphere—only two sites are available for this study—and the extended time of inter-hemispheric exchange of air, which

takes about 1 year (Jacob, 1999). As a result, sufficient information to constrain emissions in the South Hemisphere may not

be achievable, especially within the limited 5-month period of inversion in this study.
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Table B1: Mean bias and standard deviation of OmF for prior, posterior using TCCON-only, TROPOMI-only, and joint TROPOMI and
TCCON (TROPOMI+TCCON) emissions. Each OSSE starts with -50% prior emissions in the specified region. Convergence time to recover
845  true emissions are shown from the start of assimilation.

Regi OSSE OmF* mean bias OmF standard deviation Convergence time
egion
£ (-50% CO emissions) (ppb) (ppb) (month)
Prior -14.2 8.2 -
TCCON-only -2.5 4.7 >6b
Global
TROPOMI-only 0.9 4.1 3.0
TROPOMI+TCCON -0.3 3.5 1.5
Prior -7.9 4.5 -
North TCCON-only -0.5 2.6 3.0
America TROPOMI-only 0.7 2.8 2.0
TROPOMI+TCCON -0.2 2.1 1.0
Prior -3.1 4.7 -
TCCON-only -0.4 2.1 4.0
Europe
TROPOMI-only -0.5 2.2 2.5
TROPOMI+TCCON -0.3 1.9 1.5
Prior -6.2 5.5 -
TCCON-only -3.7 3.6 >6
Africa
TROPOMI-only 0.6 2.3 2.0
TROPOMI+TCCON 0.5 2.0 2.0

* Forecast (F) in OmF uses a posteriori emissions for the assimilation run and a priroi emissions for the prior (control) run.
® It means that the true emissions is not fully recovered, (|EF***"°" — Efue| /EfT€) < &, within 6 months of inversion (6 = 2%)

To optimize the performance of the inversion, we employ OmF diagnostics to estimate key LETKF parameters.

850 Specifically, we use the global mean bias and standard deviation of OmF over the full assimilation period to derive optimal
values for parameters, such as the regularization factor y, the inflation factor A, and the localization radius (r). We also
configure essential setup elements like the assimilation spin-up time, the burn-in duration, and the ensemble size to support
efficient system operation. Our analysis yields the following optimal values: yrropomur = 0.2 and yYrecony = 5, A = 0.08,1r =

500 km, with a minimum of three months for spin-up, one month for burn-in, and a minimum of 24 ensemble members—

855  each chosen to minimize OmPF statistics. Although we assume no transport modelling error, we apply an additional adjustment
by inflating observation errors to offset this assumption. These configurations are consistently used across all OSSEs in this

study.
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Overall, our OSSEs results indicate that assimilating TCCON observations alone may not provide us with sufficient
information to fully constrain the spatial context of CO emissions in regions in the Southern Hemisphere within the limited
860 study period. However, in regions in the North Hemisphere, including North America and Europe, CO emissions are fully
recovered within 2-3 months, likely due to the higher density of TCCON stations in these areas. In contrast, in the joint
inversion, TROPOMI observations addresses the larger spatial biases, which typically exist in the model a priori, while

TCCON measurements contribute finer constraints that enhance the representation of spatiotemporal variability.

865 Code and data availability. TROPOMI CO data can be downloaded from https://doi.org/10.5270/S5P-bj3nry0 (Copernicus
Sentinel-5P, 2024). The individual TCCON GGG2020 datasets used in this publication are cited in Table 1 and the references
are included in the reference list. The TCCON data are available at https://tccondata.org/2020 (last access: 6 July 2024) (Total
Carbon Column Observing Network (TCCON) Team. (2022). The NDACC data are obtained as part of the Network for the
Detection of Atmospheric Composition Change (NDACC) and are publicly available (see https:/www-

870 air.larc.nasa.gov/missions/ndacc/data.html, last access: 6 July, 2024). CO in situ measurements from WDCGG are available
at http://ds.data.jma.go.jp/gmd/wdcgg/ (last access: 1 July 2024). In situ aircraft CO measurements from Global Monitoring
Laboratory of the National Oceanic and Atmospheric ~Administration (NOAA) are available at
https://gml.noaa.gov/aftp/data/trace gases/co/pfp/aircraft/ (last access: 1 July 2024). In situ tall tower measurements at ETL
provided by Environment and Climate Change Canada is available at https://gaw.kishou.go.jp/search/station#4007 (last access:

875 1 July 2024). GEOS-Chem version 14.1.1 source code is archived at https://doi.org/10.5281/zenodo.7696651 (The
International GEOS-Chem User Community, 2023), and MERRA-2 meteorology input data can be downloaded from WashU
data portal at http://geoschemdata.wustl.edu/ExtData/GEOS_2x2.5/MERRAZ2/ (last access: 1 July 2024). The QFED emissions
(version 2.5, release 1) data can be accessed from http:/geoschemdata.wustl.edu/ExtData/ HEMCO/QFED/v2023-05/ (last
access: 1 July 2024). The GBBEPx version 4 emissions data are available at

880  https://www.ospo.noaa.gov/pub/Blended/GBBEPx/ (last access: 1 July 2024). GFAS emissions (version 1.2) can be
downloaded from https://ads.atmosphere.copernicus.eu/datasets/cams-global-fire-emissions-gfas?tab=overview (last access:
11 June 2024). The CFFEPS output is produced for ECCC’s operational air quality forecast system (Regional Air Quality
Deterministic Prediction System (RAQDPS), 2024). The CFFEPS emissions code and the accompanying user manual are
available at https://zenodo.org/records/2579383 (last access: 1 July 2024) (K. Anderson & cast of thousands, 2019). The

885 CHEEREIO source code is available at https://github.com/drewpendergrass/fCHEEREIO (last access: 1 July 2024)
(Pendergrass et al., 2024) and is documented at https://cheereio.readthedocs.io (last access: 22 August 2024). A forked
repository of CHEEREIO used in this study that contains the TCCON CO and TROPOMI CO observation operators and the
assimilation configuration is available at https://github.com/Sinavo/CHEEREIO (last access: 22 August 2024).
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